

Bachelor Thesis

CREATIVE DANCE LEARNING PLATFORM USING

MICROSOFT AZURE KINECT

Panagiotis Melios

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

MAY 2021

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Creative Dance Learning Platform Using Microsoft Azure Kinect

Panagiotis Melios

Advisor

Andreas Aristidou

Diploma project has been submitted for partial fulfillment of the requirements of Informatics

Degree acquisition from the University of Cyprus

May 2021

Acknowledgement

First, I would like to express my sincere gratitude to my advisor Assistant Professor Andreas

Aristidou, for his consistent support and guidance during the running of this project. During

the year he push me towards the best results. However, he provided me with a PC so I could

work on my bachelor thesis. Additionally, I would like to give my gratitude to Andreas

Andreou (Qiiwi Games) for providing assistant where needed.

Finally, I would like to thank my family and friends for their support and patience.

Abstract

Dancing is a way a person can exercise and reduce his stress. This platform will help users

learn Greek-Cypriot folk dances at home, with an animated tutor.

Firstly, user will have the chance to log in or register an account. Afterwards, user can choose

a specific dance to learn. From there, the system will begin capturing all the dance

movements of the user and will compare them with the animated tutors. A proper feedback

will be shown throughout the lesson, so the user will be able to know if a movement, or a turn

was done wrong or correct.

The user will have the option to choose either to play the whole dance or to play parts of the

dance, so that he can learn or improve subsets of a dance, such as turns, specific movements,

or the tempo of the dance.

The comparison of user's movement and tutor's is happening every second of the game. In

more detail, the comparison is happened only for the translation of each bone of the user.

Rotation and of course Scale are not included in the calculations.

This platform was developed in Unity 3D Game Engine. The reason I chose to develop this

platform in Unity is that Unity is free. Also is a user-friendly application, thus is much more

convenient and easier to use and of course it has a supportive community. The most

important reason that I chose Unity is the Unity Asset Store, where I used a few assets that I

acquired for free. Apart from free assets, Unity offers many useful packages, such as Text-

Mesh-Pro, Cinemachine etc. Although, it is very easy to find Online tutorials, so it makes it

even easier to learn and understand Unity.

In this thesis, I will show how I managed to achieve this comparison while using these

technologies, inside a game of dance. The source code of this project is stored in the Black

Window PC in Graphics Lab room 123.

Contents

Chapter 1 Introductionéééééééééééééééééééééééé 1

 1.1 Motivation 1

 1.2 Challenge 1

 1.3 Objective 2

Chapter 2 Literature Reviewééééééééééééééééééééé... 3

 2.1 Motion Analysis and Comparison 3

2.2 Dance digitization and analysis 4

 2.3 Comparison with other works 4

Chapter 3 Dance Acquisition and Toolsééééééééééééééééé. 6

 3.1 Teacherôs Movement 6

 3.2 Userôs Movement 7

 3.2.1 Microsoft Azure Kinect SDK 7

 3.2.2 Azure Kinect body tracking joints 10

 3.2.3 Creating the body tracking index map 11

Chapter 4 Methodologyéééééééééééééééééé....ééééé. 15

4.1 Music and dance synchronization 15

4.2 Dance Evaluation 17

4.3 Modes of Gameplay 22

Chapter 5 Results and Applicationséé.ééééééééééééééééé 27

5.1 Kinect Results 27

5.2 Results of Play Dance 29

5.3 Results of Learn Dance 31

Chapter 6 User Interfaceéééé.éé.ééééééééééééééééé. 33

6.1 Scenes 33

6.2 User Interface 35

6.3 Characters their creation and use 40

Chapter 7 Conclusions and Future Work ééééééééééééééé... 42

 7.1 Review of Project 42

 7.2 Scalability 43

 7.3 Future Work 43

 7.4 Conclusion 44

Referencesééééé.ééééééééééééééééééééééééé. 45

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Challenges 1

1.3 Objectives 2

1.1 Motivation

The goal of this platform is to give the chance to users to learn or improve Greek-Cypriot

folk dances, in a user friendly and realistic environment. Dance is a type of entertainment that

almost everyone loves. Dance has many advantages, including the relief of discomfort, the

ability to keep in shape, and the improvement of one's figure. Nowadays, many people that

are willing to take dance lessons, cannot achieve that, because of their busy working

schedule. This platform will aim to satisfy these categories of users, not only those who work

late, but also those who are shy and prefer dancing alone at home. Of course, in case of a

pandemic, like COVID-19, is the safest way to entertain yourself while been confined at

home. And, instead of going to a dance school twice a week, the user has the opportunity to

engage with this application nearly every day. The performance of the user will improve as a

result of practicing much more in gaming than in dance school.

1.2 Challenges

However, achieving this kind of platform has some challenges. Capturing the movement of

the user in real time and comparing it with the specific level of dance. Although, capturing a

dance turn and in general providing a full body capture was very challenging, that's why

Microsoft Azure Kinect SDK1 was used, specifically Azure Kinect Body Tracking SDK with

its features. Body Tracking SDK provides body segmentation, contains an anatomically

correct skeleton for each partial or full body in FOV2, offers a unique identity for each body

and can track bodies over time. Finally, another challenge was to figure out how to give the

1 Software Development Kit
2 Field of View, the extent of the observable world that is seen at any given moment.

2

user a rhythm lesson if he had no prior experience or understanding of the dance. Therefore,

user has the option to learn a dance where the dance is divided into parts and letting the user

understand each part first.

Synchronizing music with dance will also be a challenge, as it is something that it cannot be

done by code. Synchronizing a dance with a music can only achieved manually. Hopefully, a

lot of programs have the resources to let a developer achieve this synchronization.

1.3 Objectives

This platformôs aim is to use serious gaming to assist users in learning a dance and its rituals

in a simple and quick manner. The setting is an old mansion, as well as the models are

wooden dancers dressed in the traditional clothing of a Cypriot male dancer. The user will be

able to practice a dance on his own while watching a mentor demonstrate the dance in real

time, providing a more meaningful experience for the user.

Another goal was to associate Kinect with Unity, in addition to having a user-friendly and

practical game. Gather data from the Kinect, skeleton mapping, and, in particular, the

translation of each bone of the user.

The user for each dance will have two options either to play the whole dance or learn a dance.

In this case the tutor will be played in parts, and the evaluation of user's performance will be

happened for every part. This is another objective of this platform, to divide the animation

into parts. If a user fails a part with a 50 percent or below average score, the part must be

repeated. As a result, by failing and repeating a segment, the user can gain a greater

understanding of the dance he picked. Therefore, we want to create a platform to be as

realistic as possible, similar to a dance school, with the accompanying feedback message, for

the userôs performance.

3

Chapter 2

Literature Review

2.1 Motion Analysis and Comparison 3

2.2 Dance Digitization and analysis 4

2.3 Comparison with other works 4

2.1 Motion Analysis and Comparison

Motion analysis is based on the principles of Laban Movement Analysis LMA has four

components which are Body, Effort, Shape and Space and it is used in A. Aristidou et al. [3].

This algorithm captures these four LMA components and uses them to achieve comparison

and evaluation. This algorithm was used in a dancing platform where the student observes the

virtual 3D teacher performing dance movements and repeating them while the user being

monitored by a motion capture system.

A similar work that uses LMA components, but apart from LMA there are a few more

techniques that have been used such as Music-related Motion Feature and VR (Virtual

Reality) environment [4]. The VR environment is very helpful as it provides a mechanical

interaction between the user and the virtual character. In this work the user is able to see the

teacher in a VR mode and dancing with the teacher in real time. Although, this work is based

on Guidance, Rhythm and Style. The final score of the user is based on the number of

successful guidance attempts compare to a reference number and provided at the end of the

session as reward.

A motion analysis can be achieved by comparing the motion with another motion [5]. This

comparison was implemented in this work while using a Kinect-based Skeleton Tracking.

This work describes a 3D environment that automatically evaluates dance performances

against a standard performance and provides virtual feedback to the performer. The system

uses an old version of Kinect to acquire the motion of the user via Kinect-based human

skeleton tracking. The Evaluation of the Dancer in this system is calculated from three

scores: Joint Positions, Joint Velocities, and 3D Flow Error.

4

2.2 Dance digitization and analysis

There are many dance commercial games, that can be played either with Kinect or with a

combination of Kinect and Virtual Reality technology. These games have some differentials

on feedback, for example the feedback of Dance Central is just contour blushes if any part

of the body is wrong. Just Dance just shows the score and a feedback text, that is either equal

to OK, Good or Perfect based on the accuracy of the user. However, the comparison of this

game is happening with only on figure each time. Dance Paradise has a similar comparison

with Just Dance, figure by figure comparison, as well as it is not a continuous dance.

In our case, the platform will evaluate the userôs performance through a continuous dance.

Dancing a whole dance for the first time is very difficult especially for amateur users,

therefore the system will provide two options for each dance, the first option is "Play Dance",

and the second one the "Learn Dance". The difference of these two options is that the first

option will play the whole dance and the second one will play the whole dance divided into

parts. In both parts the user will receive a real time feedback and a final score.

2.3 Comparison with other works

The preview works are very similar to each other, as they use principles based on the LMA,

to achieve comparison and evaluation. The comparison and the evaluation of the movement

in this work will be based in one feature of the LMA. This platform will use the Shape

component, as well as the joint transformation, hands and legs magnitude, and finally the

speed of each joint.

The idea of this platform is that the student will observe the virtual 3D tutor performing

dance movements and repeating them while being monitored by a motion captured system.

The idea is similar to the concept of the Folk Dance Evaluation work [3]. In this platform the

motion capture system, will be the Microsoft Azure Kinect. Kinect will be responsible for the

motion capture of the user. With this system, the platform will be able to capture turns and

spins of the student accurately, as in previews works spins and turns was very difficult to

capture.

For the gamification part, the platform will give feedback to the user in the form of score for

each movement, in each second. The feedback will contain the following messages:

5

ñPerfectò, ñGoodò, ñBadò. The final score will be based on the average successful dance

movements of the user compared to the 3D tutor. In other words, the comparison will be

figure to figure for continuous dance, instead of being one figure each time. A difference

from other games apart the comparison, is that this platform will provide a learning mode,

where the animation of the dance will be divided into parts.

6

Chapter 3

Data Acquisition and Tools

3.1 Teacherôs Movement 6

3.2 Userôs Movement 7

 3.2.1 Microsoft Azure Kinect SDK 7

 3.2.2 Azure Kinect body tracking joints 10

 3.2.3 Creating the body tracking index map 11

3.1 Teacherôs Movement

The teacher movements are pre-captured templates. Professional dancers have been captured

in Computer Science Graphics Lab in University of Cyprus, using a high-quality motion

capture system. All the dances that were captured are in an online database of the university.

This database stores a large variety of Cypriot folk dancing, as well as contemporary and

Latin dances. The dances are available as fbx, bvh and C3D to download as well as the mp4

video of the recorded dancer. Because, the development of this platform will be in Unity, the

best option was to use the fbx extension of the dances, as it will be easier to change some

parts of it, these parts are needed for the training option.

All the available dances of the platform, where first opened as motion files in MotionBuilder,

where they were merged with a characterized Cypriot traditional dancer. The synchronization

of music and dance became increasingly important after that. MotionBuilder was again used

to do this. This part, of how the motion file was merged with the traditional character is

explained in more details in Chapter 6.

7

Figure 3.1 Example of using MotionBuilder to synchronize dance with music.

3.2 Userôs Movement

The movement of the user, unlike the teacherôs, needed to be captured in real-time. So, we

needed a system that will capture the userôs movement, therefore Microsoft Azure Kinect was

used in this platform. More specifically, the userôs performance is built around Kinectôs body

tracking SDK feature.

Let us start by looking at what Microsoft Azure Kinect is and how it is used in this platform,

and then we will look at how to acquire data from it and how to compare that data with the

pre-captured instructor data.

3.2.1 Microsoft Azure Kinect SDK

Azure Kinect DK, Figure 3.2.1.1, is a developer kit with advanced AI sensors that provide

sophisticated computer vision and speech models. Kinect contains a depth sensor, spatial

microphone array with a video camera, and orientation sensor as an all in-one small device

with multiple modes, options, and software development kits (SDKs). The Azure Kinect DK

development environment consists of three SDKs: the Sensor SDK (Figure 3.2.1.1), the Body

Tracking SDK (Figure 3.2.1.2), and the Speech Cognitive Services SDK which enables

microphone access and Azure cloud-based speech services.

8

Figure 3.2.1.1 Microsoft Azure Kinect, ©Microsoft taken from https://docs.microsoft.com/en-us/azure/kinect-

dk/about-azure-kinect-dk

Figure 3.2.1.2 Example of the Sensor SDK, in Kinect Viewer.

The Sensor SDK has a Depth camera access and mode control, a RGB camera access and

control, a motion sensor access, which includes gyroscope and accelerometer. It also includes

a streaming of synchronized Depth-RGB cameras with a configurable delay between them.

External system synchronization control with a latency offset between devices that can be

configured, and finally a camera frame meta-data access for image resolution and a device

calibration data access.

https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk
https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk

9

Figure 3.2.1.3 Example of the Body Tracking SDK, in 3D simpler viewer.

The body-tracking provides body segmentation, each partial or even complete body in FOV

has an anatomically correct skeleton, it also offers a unique identity for each body and can

track bodies over time.

However, the body tracking need specific hardware requirements to work. The recommended

minimum Body Tracking SDK configuration for Windows, is Seventh Get Intel® CoreTM i5

Processor (Quad Core 2.4 GHz or faster), a 4 GB Memory, NVIDIA GEFORCE GTX 1050

or equivalent, Dedicated USB3 port. These details were obtained from Microsoftôs Kinect

documentation.

Furthermore, the Unity Asset store has a few non-free Kinect Assets, with many

functionalities and tools, as for example detecting T-POSE, hand cursor control and other

gestures of the user. These assets can make Kinect work, with AMD, NVIDIA and INTEL

GPUs. I did not use any of these assets in this platform, due to their cost, but in a future work

will be very helpful.

Microsoft provides developers with a software, called Azure Kinect Viewer, which can be

used to visualize all device data for Sensor SDK. For example, it can help to verify that

sensors are working correctly. The software of the Kinect Viewer can been seen in Figure

3.2.1.2. Finding the perfect position to place the Kinect was not easy, thankfully Azure

Kinect Viewer can help finding the perfect position, so the Kinect can capture all the joints of

the user. As a result, this software gives you the chance to experiment with camera settings,

10

as well to record and playback your recordings. A similar software, from Microsoft, for Body

Tracking SDK is the 3D viewer, which can be seen in action in Figure 3.2.1.3 and Figure

5.1.1.

3.2.2 Azure Kinect body tracking joints

Azure Kinect body tracking can track multiple human bodies at the same time. Each body

includes an ID for temporal correlation between frames and the kinematic skeleton. Joint

position and orientation are estimates relative to the global depth sensor frame of reference.

The position is specified in millimeters. The orientation is expressed as a normalized

quaternion. In our case, we only track one body.

Figure 3.2.2 This figure illustrates the joint locations and connection relative to the human body, ©Microsoft

taken from https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints .

https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints

11

3.2.3 Creating the body tracking index map

The body index map includes the instance segmentation map for each body in the depth

camera capture. Each pixel maps to the corresponding pixel in the depth or IR image. The

value for each pixel represents which body the pixel belongs to. The requirement for a tracker

class was applied first to construct this index map in Unity. This body tracking index map

will be used to track the transformation of the user. This class also initializes the body

tracking system, that renders the skeleton of the user. Creating the skeleton was the first step,

the next step was to animate the userôs skeleton to an avatar. The explanation for this is so

that the user can see himself dressed as a typical character, such as the tutor, and see a

reflection of himself dancing, as seen in Figure 3.2.3.

To enable the Kinect body tracking system, all we had to do is to create a tracker according to

Kinect's documentation. Note that, Kinect provides packages for Unity through Visual

Studio, those packages are for Sensor and Body Tracking systems which are under the

namespaces Microsoft.Azure.Kinect.Sensor and Microsoft.Azure.Kinect.BodyTracking.

These packages are working as APIs, Microsoft also gives a documentation for all the classes

and functions that are in these APIs. Afterwards, this tracker will store all the joints of the

user and these joints will be used to animate a dressed character so, that the user will be able

to see himself. More specific, I used a prefab, that contains the component of Tracker script,

as seen in Figure 3.2.3.1. When the start function is called, that means when the game object,

that holds the specific script, is enabled, at the first frame, the tracker is initialized. The joints

that are stored are built in the prefab, so a skeleton is created. Within the update function,

which is called in every frame, the skeleton is updated from the joints that the Kinect reads.

12

Figure 3.2.3.1 Example of the tracker generated from Kinect.

Algorithm 1 Tracker

1. procedure START

2. tracker Ŷ new tracker()

3. procedure UPDATE

4. tracker.UpdateTracker()

The creation of the puppet, the animated character, is very important as it maps all the

Kinectôs joints to an avatar. Having the joints from the tracker, all we must do is to set a new

character in the scene and find his root, which will contain as a Transform object, the

transformation of the trackers root. Therefore, having the root transformation of the character,

with the help of animator, we can locate the rest of the characterôs joints, which would have

the same transformation values, as the tracker has. The reason we want to create and render

the animated user in a canvas, it is so he can see himself while dancing, which is like standing

in front of a mirror, just like a real-life dance school. Many dance schools have a large mirror,

which is very helpful, so the students can recognize any of their mistakes while dancing. This

helps the user experience of the user as well as the user interface looks better.

13

Figure 3.2.3.2 This figure illustrates the characterized avatar, which is the tutor and the student.

Algorithm 2 Puppet Avatar

1. procedure START

2. animator Ŷ GetComponent()

3. for i=0 to JointID.Count do

4. MapKinectJoint(i)

5. Transform Ŷ Animator

6. Offset Ŷ GetSkeletonBone

7. end for

As you can see from the above algorithm, to create the puppet effect, apart from the joints

and the animator of the character, it is important to include the offset of the character. This is

optional in the script, but it is used to place for example the character in the middle of the

scene, and in Play mode the character will be transferred to the offset coordinates for x and y.

Another important calculation is to Map the Kinect joints, with the help of the function

MapKinectJoint(int i). This function contains a case statement, which returns a

HumanBodyBone3 for each integer number is given, the default case is the last bone that was

used. The joints that MapKinectJoint uses are the following: Hips, Spine, Chest, Neck, Head,

3 The human bone that is queried.

14

Left upper leg, Left lower leg, Left foot, Left toes, Right upper leg, Right lower leg, Right

foot, Right toes, Left shoulder, Left upper arm, Left lower arm, Left hand, Right shoulder,

Right upper arm, Right lower arm, Right hand.

15

Chapter 4

Methodology

4.1 Music and dance synchronization 15

4.2 Dance Evaluation 17

4.3 Modes of gameplay 22

4.1 Music and dance synchronization

Before evaluating the dancerôs performance, we must make sure that the dances are

synchronized with their music. The reason we want to synchronize the music with the dance

is to make it easier for the user to understand the tempo and the rhythm of the dance. Besides,

no one can dance without listening to the music, especially if the music is off the tempo.

MotionBuilder was used to accomplish this synchronization, as discussed in Chapter 3.1. It is

not easy to get those two components to work together, particularly in MotionBuilder. Many

programs exist that can do this, but they are not free. To achieve synchronization in

MotionBuilder, I followed these steps: open the motion file that contains the animation clip,

then import the audio file, which requires the QuickTime library to be downloaded. Then,

after the audio has been imported, you can set the Dist In option of the audio in the audio

window, which is when the music in the above animation will begin. The audio window in

MotionBuilder can be seen by Figure 4.1.1.

Any dance animation begins with a T-POSE, much as the performer did when they were

captured. As a result, unlike the music, which is an mp3 file and plays instantly, the

performer does not start dancing from the first second. Thankfully, the graphics lab, has

saved the footage of the dancers in action, in the dance database. The footage also has

background music, which makes it easier to determine when the music should be played. I

measure the offset, the delay, between music and the movement for each dance animation and

store it as float values, in the code. The reason I did this is to assess the userôs success when

the dance is in progress, that is while the music is playing, so he can dance with the rhythm.

16

In more details, we must find the specific frame that the music kicks in, as seen from Figure

4.1.1. The animation is displayed in 30fps4, so we divide that frame with the number of the

fps. The result gives as the offset in seconds. However, MotionBuilder allows you to adjust

the number of frames per second (fps), which in our case is 30. For each dance, this offset is

calculated, with the above method.

Figure 4.1.1 Example of synchronizing music with dance.

When the animation begins to play, the music must wait for a specific amount of time, this

amount is the offset, the delay, that was calculated before. So, to create the delay

functionality, Coroutines were used, as seen from Algorithm 3. A coroutine is like a function

that has the ability to pause execution and return control to Unity, but then to continue where

it left off on the following frame. By default, a coroutine is resumed on the frame after it

yields, but is also possible to induce a time delay using the function WaitForSeconds.

Coroutines were also used in the 4.2 Dance Evaluation, so that the evaluation will happen in

each second.

Algorithm 3 Wait For Animation

1. procedure WaitForAnimation(offset)

2. Play animation

3. yield WaitForSeconds(offset)

4. Play music

For the music, I used a package from Hellmade. All the sounds were store as Audio Sources.

This package helps the developer to adjust background music, and sound levels, as well as

fade in and fade out, as it takes the sound as Sound clips. Each time the music starts, I use a

fade in effect that takes approximately one second for the music to reach the highest volume.

For the fade out effect I set it to take two seconds, to reach the volume level zero. The same

logic is applied in the section where the user must choose a dance, where a preview of the

dance and the music background is displayed.

4 Frames per second

17

4.2 Dance Evaluation

After rendering Kinect to the Scene, and having the animated teacher synchronized with the

music, all it is left is the dance evaluation and comparison. The dance evaluation, in this

application includes the local translation of tutor and user, as well as the velocity of the joints.

We did not measure the rotation of the user, because the skeleton that is rendered from the

Kinect, is a little shaky at the hands, therefore it will be difficult to determine a correct

rotation. The reason of this is that Kinect, is a low resolution motion capture system, so there

is no point of taking in account the rotation of each joint.

We want to measure the velocity, which was done by using the Algorithm 4, and local

location of each bone and finally we want to see if the user's pace and accuracy are similar to

the tutor's, indicating that the user is dancing correctly. The local position of a joint means the

position of the joint in the scene graph. More specifically, to calculate the local positions for

all the joints, I used the vector magnitude function as shown by Algorithm 4. To calculate for

example the local position of the Hands, I measured the magnitude of the Hands and the

Shoulders, in more details, for the right hand we need the magnitude of the right shoulder and

the right hand, for the left hand we need the magnitude of the left shoulder and left hand. A

similar logic is applied for the legs, where I use the feet with the hips.

Algorithm 4 Vector Magnitute

1. procedure VectorMagnitute(Vector3 A, Vector3 B)

2. return sqrt((A.x ï B.x) ^ 2 + (A.y ï B.y)^ 2 + (A.z ï B.z)^2)

The evaluation, and the comparison in general, of the dance takes place in both game modes.

Every second, the evaluation is determined. As mentioned in section 4.1 Music and dance

synchronization, coroutines were used to implement the functionality for waiting one second

before the evaluation.

The evaluation is a function that returns a float result. The score of the user is the product of

this method. Since the evaluation is calculated every second, an array of floats with a length

equivalent to the animationôs clip duration is initialized until the dance animation is played.

For example, the first antrikos antrikristos karsilamas animation has a length of 78.3 seconds,

rounding the float to integer gives the length equal to 78, so there will be 78 evaluations, one

for each second. Chapter 4.1's previously calculated music and dance synchronization offset,

is subtracted from the duration of each dance, so that the dance and the music are perfectly

synchronized. The overall result is the average of the float arrayôs total summary.

18

Algorithm 5 Calculate Speed

1. procedure CalculateSpeed(Vector3 A, Vector3 B)

2. return VectorMagnitude(A,B) / Time.deltaTime()

First, we compare the position of the joints of the user and the tutor. There is no need to

calculate all the joints in this section; the only ones we need to calculate are the hands (left

and right), shoulders (left and right), hips, and feet (left and right). The shoulders and the hips

are important so that I can use Algorithm 4 to measure the distance between the hands and

shoulders, and the distance between the feet and hips.

Secondly, in the algorithm I also calculate the Shape component. The Shape component, is

the way the body is changing towards some point in space, is also used in the calculations.

More specifically, shape components features are the following:

¶ Volume: The bounding volume of all joints, gives the volume of the performerôs skeleton.

¶ Torso Height: Calculating the crouch, is achieved by measuring the distance between the

head and root joints.

¶ Hands Level: The position of the hands indicates whether they are over the head, between

the head and chest, or below the chest.

From the Shape component the Hands Level and Torso Height can be calculated from the

first part of the algorithm, which is just a magnitude calculation. The second part of the

algorithm is to calculate the Volume.

The Volume is calculated, by calculating the volume of the character. To keep the evaluation

simple, for the volume calculation we will need only the five main joints of the character,

which are the Head, Hands and Feet. Connecting these joints will create an irregular polygon,

so by calculating in each second the volume of this polygon, we know what the volume of the

character is. The formula for this equation is based on the Shoelace Theorem, which states

that we can measure the area of an irregular polygon using the vertices' coordinates, as seen

in Figure 4.2.1. After finding the area from this formula we multiply with the length on the Z

axis. Finding the volume of a polygon requires to multiply the base with the height. In our

case the base is the area that the user creates, and the height, is the distance of the minimum

and maximum value on the Z axis, the depth of the user.

19

Figure 4.2.1 This is the Shoelace Theorem, that calculates the area of an irregular polygon, taken from

https://en.wikipedia.org/wiki/Shoelace_formula

Of course, the result of the volume will once again be the result of the comparison of both

userôs and teacherôs volume. The fraction of the result, similarly as what we did before, will

determine how close the two volumes are. The same principles will be used here. If the result

is between 60% and above, then the score of the user will increase by one, but if the result it

is lower that 60%, then the result will decrease by one.

Algorithm 6 Evaluation

1. procedure float Evaluation()

2. score Ŷ 0

3. Get last positions of hands, shoulder, hip and feet of student and tutor.

4. Find the position of hands, shoulders, hip and feet of student and tutor.

5. Calculate the speed of each joint, using last and current position using Algorithm 5.

6. score Ŷ Compare speeds for each joint of user and tutor.

7. Find the distances for user and tutor using Algorithm 3.

8. VectorMagnitude(left_feet, hip)

9. VectorMagnitude(right_feet, hip)

10. VectorMagnitude(left_hand, left_shoulder)

11. VectorMagnitude(right_hand, right_shoulder)

12. score Ŷ Compare the distances of user and tutor.

13. Calculate the volume of user and tutor.

14. score Ŷ Compare the volume of user and tutor.

15. save_positions()

16. return score;

As we can see from the Algorithm 6, at lines 6 and 12 we have to compare userôs and tutorôs

data. Here, the main idea is to divide the userôs current data with the tutorôs and get the result

https://en.wikipedia.org/wiki/Shoelace_formula

20

of the fraction. The fraction will show, how close the two numbers are. The score increases

by one, if the result of the fraction is between 0.60 and 1.0. That means that if the user in the

current second of the evaluation, is close to teacherôs movements by 60% and above then he

increases his score by one point. If the result of the fraction is lower than 60% the score

decreases by one. That is, if a user fails in a second, the score for that second is likely to be

negative. In this algorithm, all comparisons, including speed, distance, and volume, have the

same weight in the final result since they add and deduct one point. This method is a balanced

assessment, and it is based on the same criteria as all of the contrasts.

An example of how this evaluation works, specifically the score, is shown in Graph 4.2.1, for

the 1os antrikos antrikristos karsilamas dance. For each second, we have a value of the total

score, as said these values are stored in an array, where in the end of the dance the average

score of these scores is calculated, giving the result.

Graph 4.2.1 Example of the Evaluation per second.

The evaluation could be calculated different, by making sure that the user and the teacher are

fully synchronized. This is much more difficult to calculate and implement, because for each

component, in a high-level description, you must find the peaks of each value and compare

them for both user and teacher. For example, if the teacher is standing still for 2 seconds, and

moves the right hand, then the transformation of the right hand will be still for 2 seconds, and

on the third second will increase. If the user tries to imitate this move will probably do that on

the fourth second. Comparing those two peaks, is a way to compare the same movements of

21

user and teacher, no matter if the user is not fully synchronized with the teacher, as shown in

Graph 4.2.1.

Graph 4.2.2 Example of the synchronization that could be used.

As previously said, this synchronization is much more complicated than the one I used. In

fact, achieving this synchronization would take a long time, for understanding how it works

and implementing it.

As a result, the logic that I used is much simpler than this, so the user must act at the same

time as the instructor in order for his or hers results to be properly calculated. This, however,

makes the gameplay more intimidating for amateur users, but it also increases their results as

they improve in time.

Note that, this evaluation does not calculate the coordinates of the joints in the scene. To be

more specific, it ignores the fact that the teacherôs feet are at position (0.5, 0, -0.25), implying

that the userôs feet must be near that location.

The last part of the evaluation is to display a realistic as possible feedback to the user like a

real instructor. This feedback could be, for example a message such as ñPerfect dance!ò,

ñNice try!ò or ñBad try!ò. Feedback messages are very important in applications, especially

in games, because they help user understand, what is going on, and in general are a part of the

user experience. Showing messages in the screen is the best way to give user a proper

feedback of his or her performance.

22

4.3 Modes of Gameplay

This platform supports two game modes that make it easier for the user to learn a dance. The

first mode is referred to as "Play Dance," while the second is referred to as "Learn Dance". In

both modes, there is always the tutor that performs the dance.

The tutor is an fbx motion file, where the animation type must be set to Humanoid, and the

animator component must have set to true the apply root motion, as seen from Figure 4.3.1

and Figure 4.3.2, in order to play the animation clip through the animator component of the

character. If neither of these two settings is used, the character will most likely lose his

translation and will only be able to move the hands and the legs. As a result, this is not going

to look good for the animation.

Because the instructor is rotated 180 degrees, and faces the camera, his movements are

mirrored. For example, if he raises his left hand, the user will might think that the tutor raised

his left hand. To correct this misunderstanding, we added two NPC5 student dancers, who

face the tutor in the same way as the user does. The NPC students dance simultaneously with

the tutor. The NPC characters are shorter than the teacher, allowing the teacher to stand out.

This method would make it much easier for the user to comprehend the instructor's

movements. So, it does not matter if the user watches the tutor or the NPC, while dancing.

The importance of the NPC, in this game, is shown in more details in the next chapter,

Chapter 5.

Figure 4.3.1 Animator component of the character.

5 NPC: Non-player character

23

Figure 4.3.2 Animation Type of the character

In the first mode, the tutor performs the whole dance. It is very difficult, for an amateur to

follow the tutor in this mode, as sometimes the dance might be very swift, or might have

difficult movements and turns. In this mode, we do not change the animatorôs speed, in

contrast with the ñLearn modeò. as the part will play only by using the function

Animator.Play(), like the Algorithm 3. This mode is recommended for users that they

considered themselves as intermediate or experts.

The ñLearn Danceò is an excellent choice to start for inexperienced users. The dance is

performed in parts. The parts are created manually in the Animation tab of the motion file,

see Figure 4.3.3. Each part it is a copy of the original Animation clip, with a different Start

and End frame. These Animation clips that are created, are used in the Animator of the

activated character, as seen in Figure 4.3.4. Having all those parts in the Animator, it is easier

to decide which part will be played. A script TagHolder.cs has all the string of all the

24

animations in the game. When for example the user selects the Zeimbekiko dance, in learning

mode, a list gets filled with all the parts of that animation. So, each time a part is successfully

performed, the iteration in the list moves to the next one, until it reaches the last part. If the

user achieves a score of 50% or higher, that is a successful performance, therefore the tutor

can proceed to the next part. This is repeated before the dance reaches its conclusion. After

the dance finishes, then the overall evaluation is displayed on the screen. The overall

evaluation is the average evaluation of each part.

25

Figure 4.3.3 Example of the Animation tab and the parts of a character in Unity.

26

Figure 4.3.4 How the Animation clips are used in the Animator, in Unity.

There is no transition between the animation clips in the Animator window. All we do in this

part is to first set animatorôs speed to one, then play the animation using the Animator.Play()

function and pass to the function the name of the state as a parameter. The name of the state,

as mentioned above, is the current name in the list. After the current animation part is

finished, the animatorôs speed is set to zero. This has as a result to stop the animations that

the character is playing, to show a message that the user is moving on to next part. This is a

loop that keeps playing until the Animator reaches the last state, which is the last Animation

clip.

27

Chapter 5

Results and Applications

5.1 Kinect Results 27

5.2 Results of Play Dance 29

5.3 Results of Learn Dance 31

5.1 Kinect Results

Getting data from Kinect was not easy, especially when sometimes the data were wrong. The

reason that the data could be wrong were the following errors: The position of the Kinect in

the room could not capture the feet, because the user was very close to it. The Kinect was too

high and could not read the feet of the user correctly. The Kinect was lower from the user,

therefore the Kinect could not read his head. Sometimes the user, could get out of the Field of

View of the Kinect while dancing and for those seconds he was missing, Kinect could not

read the missing joints, as a result the animated character would ñbreakò, as seen from Figure

5.1.1, because the tracker cannot map its joints to the animated character. After many trials

and errors, I found a spot in the room where I could place the Kinect and I was sure that it is

high was perfect and it could record all of the userôs joints. The preview of the user that is

rendered to the game play, was very helpful to understand if Kinect misses one of the userôs

joints, as well as the Kinect Viewer. Despite these errors, the Kinect creates a character, but it

is not very smooth. Sometimes, the hands are showing like they are shaking.

As mentioned in the beginning of this work, Kinect can track up to 5 people at the same time.

In this platform, Kinect tracks only one person-body. So, the Kinect can lose the data of the

user, in case another user appears in the field of view of the Kinect. By losing the data, means

that Kinect will return for example for the right had joint the position of (0,0,0), instead of

(2,1,0.5), there the evaluation will produce a non-valid result.

28

Another problem that might affect the Kinect result is the following, if a part of the body gets

in front of another, this makes it hard for the Kinect to capture the part that is behind the

other. Of course, if this movement happens very fast there is no problem. Something like this,

can be seen from Figure 5.1.2, where we can see the user that is crouching, and Kinect cannot

capture his Left foot joints.

Figure 5.1.1 Example of character moving away from the FOV of Kinect.

Figure 5.1.2 Example of how Kinect captures the userôs crouching.

29

After many attempts in different dances, including both modes, it was very difficult for me to

keep up with the teacher. The reason of that is the synchronization problem of the user and

the teacher. To achieve a perfect evaluation, the user must dance simultaneously with the

teacher, therefore this is very difficult especially for someone inexperienced like me. As a

result, setting the comparison to 60% was the optimal value. The comparison is defined in

Chapter 4.2 Dance Evaluation, where the algorithm compares the magnitude, pace, and

volume of both the user and the instructor. In addition to considering the user's movement

success, these values must be 60% or higher. Another reason that the 60% and above was

decided, is that Kinect, as it a low resolution motion capture system, does not calculate the

exact position of a joint. This threshold was also reduced from the amount of percentage was

required to pass the successful comparison.

5.2 Results of Play Dance

The Play Dance mode it is not easy, especially for an amateur. The type of dance can be very

fast or very tricky, which makes it hard for the user to keep up with the teacher. The only

dance, which is easier from the others is the Hasaposerviko. The reason that this dance is

easier, than the other, is that it has very simple and easy movements, therefore there are not

many turns and kicks. I attempted the first dance, the "1os antrikos antrikristos karsilamas",

which for me is an intermediate dance, five times to see how the evaluation works and, in

general, if the whole idea will help me memorize sections and develop my skills for the

particular dance, as seen in Graph 5.2.1. This experiment was done without the NPC dancers.

The average score in this section was just over 40%.

Graph 5.2.1 Results after 5 tries of 1os Antrikos antrikristos karsilamas without NPC dancers.

