
 

 

Bachelor Thesis 

 

 Simulating Building/Monuments Aging using 

Procedural Generation 

 

 

 

 

Nearchos Nearchou 

 

 

 

University of Cyprus 

 

 

 

 

 

 

Computer Science Department 

 

 

December 2021 



UNIVERSITY OF CYP RUS 

COMPUTER SCIENCE DEPARTMENT  

 

 

 

 

 

APPROVAL PAGE 

Bachelor of Science Thesis 

Simulating Building/Monuments Aging using Procedural Generation 

 

Presented by Nearchos Nearchou 

 

 

 

 

 

 

Reasearch Supervisor       ____________________________________________________________ 

 

Andreas Aristidou 

 

 

 

University of Cyprus 

December, 2021 



 

Acknowledgements 

I would like to express my deep gratitude to my thesis supervisor, Assistant Professor Andreas 

Aristidou at the Department of Computer Science of the University of Cyprus for his expert advice 

and encouragement throughout this difficult project.  

I would also like to thank Christos Othonos for sharing this inspiring project with me and provided 

me with all the necessary knowledge in order to get a complete image of the project. He was always 

accessible to answer my queries and clear up any facts I needed to evaluate. 

I would also like to thank my friends who endured this long process with me, always offering 

advice and unconditional love.  

Finally, I would like to thank my family for the support and encouragement they showed in this 

very intense academic year. 

 

  



Abstract 

Procedural Generation plays an important role in modern computer graphics and design. For that 

creation of buildings, procedural construction is key. Although there are several tools for creating 

good-looking structures, many of them lack a realistic and artistic touch. Structural degradation by 

weathering effects and real-world occurrences must be taken into consideration to make them 

appear more authentic. This project illustrates an implementation, which uses the CGA Shape 

Grammar to design a structure, the grid model to store several attributes of the model, and a variety 

of techniques and tools to illustrate how buildings and various materials age. 
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1.1 Motivation 

Computer graphics necessitates the use of technology. They are becoming a widespread feature in 

user interfaces and commercial motion films on television. Today's computer visuals are vastly 

different from those of the past. Artists and architects now have an interactive user interface that 

allows them to manipulate the structure of an item using a variety of input devices.  

In films and video games, graphic designers seek to convey their creative vision and evoke feelings 

within the audience. As a result, the film and gaming industries aim to achieve distinctive outcomes 

by hiring a large number of artists and spending a significant amount of money and resources. 

Therefore, procedural generation emerges to assist businesses in avoiding costly outcomes. 

Procedural generation is the process where the computer creates the most needed materials using 

only the necessary resources. As a result, a lot of time and money can be saved to increase the 

efficiency and the development of a big-scale project. 



Furthermore, procedural generation in buildings has been increasingly popular in the last decade, 

and individuals are experimenting with new ways to portray their structures. However, many 

procedural construction approaches have significant flaws, such us their generators, which are 

quite sluggish, and the data intake is enormous. These limitations create an opportunity and 

encourage scientists to examine the use of building generation for video games, with a particular 

focus on inventing an algorithm that reduces the amount of mesh data created for each building 

and the generation time. 

In terms of the results that computers generate, most projects lack a realistic look, since they 

generate ñexcellentò outputs according to the data set given. In contrast real life, where people live 

in houses that have flaws due to the passage of time and weather conditions, and this is what the 

game users and spectators want to see. As previously stated, individuals struggle with modelling 

rather than displaying the impact from ageing and weather conditions. They want to handle their 

large input data in order to provide larger outcomes, which are what the majority of consumers 

really want to view; results. 

The goal of this solution is to develop outcomes that are fairly similar to those seen in the actual 

world, not flawless but still pleasing to the eye. The aim is to handle as much data as possible in 

order to get high-resolution, low-complexity outcomes. 

1.2 Contributions 

The following are the thesis' key contributions: 

¶ Use the software SideFX Houdini, employ façade operations with the CGA Shape 

Grammar, simulate the model procedurally, and apply aging to it. 

¶ Use of CGA Grammar Shape to split all of the building's facades and assign each façade 



to a distinct group. 

¶ Introduce a procedural method for assigning attributes to each point of the construction by 

reading files. 

¶ Present weathering effects utilizing aging tools/techniques that are similar to how 

structures age in the actual world. 

¶ Demonstrate alternative ways for how a structure may behave rather than target the 

simulationôs efficiency.  

¶ Introduce various building materials and how they mature. Some materials are stiffer than 

others, and the effect that a material may have varies. 

1.3 Objective 

The project's desired result is to implement a system that generates age effects for buildings in a 

procedural manner. The purpose is to create a tool to aid graphic designers, as well as architects, 

to achieve more accuracy when creating historic structures or imagining how a building would 

age. Furthermore, the approach may be beneficial to the gaming industry. When a project requires 

the construction of a new or deterioration of an existing structure, a large number of graphic 

designers and programmers work tirelessly to get the desired outcome. With the aid of procedural 

generation, a lot of time and resources are saved, allowing graphic artists to focus all of their 

attention and creativity on the minor details, resulting in a considerably better product. Finally, the 

technology would allow the artists to use their talent to produce fascinating aging effects and 

demonstrate their abilities. 
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2.1 Procedural Modeling of Buildings 

Parish and Muller (2001) employed procedural modeling to construct CityEngine, a software tool 

that was first developed at ETH Zurich and eventually bought by ESRI.  CityEngine is a 

commercial multi-platform 3D modeling program that was created to create 3D urban landscapes. 

The procedural method to modeling efficiently is the central principle of CityEngine (Müller, 

Zeng, Wonka and Van Gool, 2007). The pipeline includes numerous procedural modeling tools 

for creating large-scale urban layouts as well as CGA rules for generating complex structures 

(Müller et al., 2006). In summary, this method uses a rule-based approach to provide a rapid and 

easy way to develop urban design scenarios. The issue with this strategy, as a result of the mix of 



different types, would be to alter parameters to adapt to current city conditions. 

2.2 L-system 

Muller et al. (2006) used the Lindenmayer systems or L-systems which they were outlined by the 

Hungarian scientist and botanist Aristid Lindenmayer in 1968 who needed to portray plant 

development (Müller et al., 2006). The exhibit of astounding success based on the utilization of 

design grammars had fundamental impact on procedural methods. In spite of the fact that L-

systems are not specifically pertinent for this goal, the notion of grammar and some of the rules 

(scale, translate, rotate) were embraced for Procedural Modeling Buildings (Müller et al., 2006).  

L-systems follow a straightforward consecutive structure which can be characterized by 

three fundamental parts: ñVò which is an alphabet of the system, an axiom ñɤò as a string of 

symbols and a finite set of production rules ñPò which characterize the way in which 

the factors modify themselves (Wonka, Wimmer, Sillion and Ribarsky, 2003).  

2.3 CGA Shape Grammar  

The scripting language that is used for the generation of entities in CityEngine is a Computer 

Generated Architecture (CGA) shape grammar (Müller et al., 2006). CGA is based on the L-system 

data structure which uses shapes rather symbols. 

CGA shape grammar is characterized by:  

¶ a set of geometries or shapes, 

¶ a set of geometry/shape operations, 

¶ a set of rules, 

¶ the initial shape. 



 

The following sections will provide a brief overview of each one of the CGA shape grammar 

characteristics. 

Shape 

A shape is the foremost imperative concept of CGA shape grammar. 

The properties of a shape are: 

¶ the pivot, which is defined by a root and direction point,  

¶ the bounding box's scope, which is determined by translation, rotation, and size 

¶ the geometry 

 

 

 

 

Figure 2.8: main attribute of a CGA shape. CGA shape grammar shape definition, from (Müller et al., 

2006). The pivot is P, the scope is S, and a sample shape is presented within the scope. 

 

Rules 

The alteration of shapes is done using generic principles, similar to L-systems. All CGA rules have 

the format   



Predecessor --> Successor. 

As can be seen from the figure above, the predecessor (left side of arrow) must be replaced by the 

successor (right side of arrow). A set of shape operations are employed to define the model's new 

shape after Successor. 

The examination of how CityEngine divides a block into four storeys using a 2D polygon will be 

explained in the following example (Klippel, n.d.): 

Lot --> extrude (10) Envelope 

Envelope --> split(y) {~2.5: Floor} *  

The first rule mandates that the 2D form "Lot" must be substituted by a 3D shape "Envelope", 

which is created by extruding the 2D polygon by 10 units. The second rule states that each 

Envelope created by the first rule shall be divided (y axis) into four 2.5-height Floor forms, for a 

total of four floors (Klippel, n.d.). 

 

Operations 

The project employs general operations to alter forms in the same way as L-systems do. The 

following are the key operations: 

¶ insertion: adds geometry and/or a texture to the scene. These are architectural components 

of structures, such as a windows, doors, or beams.  

¶ basic graphics transformations: translate, scale, rotate. 



¶ subdivision split: Splits the current form into numerous shapes. Splits are ubiquitous in 

architecture. The repeat splits, following specific rules. 

¶ component split: breaks a form into smaller components, such as faces, lines, or points. 

This is helpful in design to isolate a facade from the building mass model, for example. A 

mass model is a simplified model that depicts the main structure of a structure while 

omitting specifics. 

 

CGA example 

Figure 2.9 displays a basic illustration of a facade's breakdown. A CGA Shape Grammar may 

readily capture this breakdown. 

 

 

 

Figure 2.9: Deterioration of the facade explained in paper (Muller et al. 2007). 

 

2.4 Building Aging 

Gutierrez and Sheffer introduced a variety of tools and strategies for presenting building aging by 



employing weathering processes and aging occurrences in a variety of materials, including 

mudbrick and rocks (Gutierrez and Sheffer, 2015). The models created and described in this paper 

are based on their method, and they have been designed to include their ageing representation. 

This is achieved by modifying the FEA mesh for a specified time frame to simulate aging 

(Gutierrez and Sheffer, 2015). Assuming aging values for each grid point and keeping track of the 

damages as time passes, when the value is 0, it implies it has been entirely destroyed, however 

when the value is 1 it suggests it has not been completely destroyed (Gutierrez and Sheffer, 2015). 

According to the aging values, the FEA mesh is extruded and molded. The purpose is to move the 

aged data into the procedural pipeline so that the building may be completed. Each surface is 

represented differently once the data has been transmitted. For example, the ceiling is being pushed 

inwards as the walls are being peeled. Another thing to keep in mind is that each material has a 

distinct stiffness. Mudbrick, on the other hand, is more susceptible to erosion and slow weathering, 

which results to incremental and, in many cases, smooth destruction (Gutierrez and Sheffer, 2015). 

After reviewing the main theories and research that has been conducted Procedural Modeling of 

Buildings, CGA shape grammar, L-Systems and Building aging, the theoretical framework behind 

this project is established. Following this, more information about how the theories were 

implemented in the project will be provided. 
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3.1 How Different Materials age 

This section of the document will address the aging of various construction materials. The goal is 

to see how all of these materials evolve over time so that data is included in the solution. 

 

Mudbrick  

A mudbrick, also known as a mud-brick is the oldest and most often used in construction material. 

It's an air-dried brick constructed of loam, mud, sand, and water, with a binding substance like rice 

husks or straw (The Oxford Companion to Archaeology, 1997). Mudbricks have been around since 

9000 BCE, but bricks have been burned since 4000 BC to strengthen their strength and longevity 

(The Oxford Companion to Archaeology, 1997). In figure 3.1 can be seen an example of how a 

mudbrick ages. 



 

 

 

 

Figure 3.1: Left image is example of mudbrick in houses and the right image is how it ages. 

 

Wood 

Wood is mostly employed in the floor construction, although it may also be found in the walls. 

Wood has played a vital part in the history of civilization. Humans have utilized it for a variety of 

purposes, including fuel, building materials, furniture, paper, tools, and weaponry (D'Costa, 2015). 

Figure 3.2 shows the effect of an aged wood. 

 

 

 

 

 

 

Figure 3.2: Left image represent a healthy wood and the right side an aged wood 



Concrete 

Concrete is a long-lasting and adaptable construction material that may be found all over the world 

(6 Popular Uses for Concrete - Ozinga, 2013). It's used on some of the most unusual concrete 

structures in the world, and it can be seen everywhere in nowadays (6 Popular Uses for Concrete 

- Ozinga, 2013). Figure 3.3 shows the crack effect that is being created from an old concrete.  

 

 

 

 

 

 

Figure 3.3: Stone aging representation 

 

Stone 

Stone is another significant construction element. Stones can be used for flooring, roofing, 

brickwork, paving roads, and as aggregates in concrete, depending on the kind (Types of Building 

Stones and their uses, 2019). Natural stones are used to construct the majority of prehistoric 

structures because they are more solid throughout time (Types of Building Stones and their uses, 

2019). An example of how a stone age can be seen in figure 3.4. 



 

 

 

 

 

Figure 3.4: Stone aging effect 

 

3.2 Aging Effects 

 

Cracks 

Cracks are usually visible in walls rather than roofs, especially on mudbrick and concrete 

materials. It's possible that it will show up on other materials, but it's not very common, especially 

on stones that don't have a binding substance. Figure 3.5 depicts a few additional examples. 



 

 

Figure 3.5: Crack effect on houses 

 

Tiles Collapsing 

When the tile absorbs too much water then the outer layer isn't adequately protecting it. As a result, 

if moisture is absorbed, the tile swells, expands, and creates pressure. As a consequence, the tile 

stands out, and in many circumstances, since tiles act as a support system for other tiles, they all 

follow suit. Figure 3.6 further shows how the tile collapsing action frequently results in holes in 

the structure. 

 

 



 

 

Figure 3.6: Representation of tiles collapsing 

 

Peeling 

Many houses have an outside layer that conceals the construction material (wood, concrete, 

mudbrick, etc.). However, if proper care is not performed, that layer will peel away, revealing the 

substance beneath. 

 



 

 

 

 

 

Figure 3.7: Peeling effect on houses 
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4.1 Houdini  

SideFX Houdini itôs a 3D tool that procedurally allows its artists use the software for the film and 

game industry. Houdini's procedural character comes from the ability to store nodes and transfer 

the data quickly and effectively to other attributes, allowing its users to use them in different forms 

without starting over; and thatôs what makes Houdini extremely flexible. Houdini is also famous 

for its Visual Effects. Having a strong toolset allows its users to explore as much as possible the 

animation and procedural modeling (FX Features | SideFX, n.d.). 

Bellow follows a list of the essential tools and features that Houdini will provide for this solution. 

 

 



Geometry 

Geometry in Houdini is built up of primitives and the most frequent are the polygon faces. A vertex 

is a point on a polygonal face. The difference between a vertex and a point is that a point can be 

shared by associated primitives however vertices are unique to each primitive (Geometry 

functions, n.d.). 

 

Attributes  

Houdini uses attributes as values. Point attributes include things like color, location, UV 

coordinates, weight and normal (Geometry attributes, n.d.). Attributes are being stored as 

primitives, vertices, points, or as an entire geometry (referred to as the "detail" level) (Figure 4.1) 

(Geometry attributes, n.d.). 

All these attributes can be utilized for a number of things such as changing the shape of the 

geometry. 

 

 

 

 

Figure 4.1: A deeper understanding of an attribute in Houdini 

 



Operators 

The procedural essence of Houdini can be found in its operators. There are several operators in 

Houdini but only the relevant ones for this application will be discussed. The most important are 

the Surface Operators (SOPs) which these are used to construct and modify geometry usually for 

procedural modeling (Houdini (software) - Wikipedia, 2006). Dynamic Operators (DOPs) are 

solvers that are used to construct simulations, Vector Operators are for altering geometry, Shading 

Operators represent a shader that will be used on geometry and finally Composite Operators are 

utilized to perform compositing on recordings (Houdini (software) - Wikipedia, 2006). 

 

Script 

For its scripts Houdini uses Python or Hscript which does not manipulate geometry. The use of 

the scripts is mainly for doing difficult computations and it is also some sort of way to collaborate 

with Houdini IDE (Python Script, n.d.). Figure 4.2 illustrates an example, where python is used to 

read some files and pass values to the primitives depends on the file content. 



 

 

 

 

 

 

Figure 4.2: Python script 

 

Groups 

Groups refers to a grouping of points or faces. To create a group, the user must give the name, a 

type (primitives, points, edges, vertices) and finally a function (replacing, union etc.) (Figure 4.3). 

Something fascinating about Houdini is that when a point is eliminated then Houdini removes it 

from all the groups that it was being used in. There are two types of point groups: ordered and 

unordered. Ordered groups stock their points in selection order and unordered groups stock their 

points in creation order (Groups, n.d.). 

 

 

Figure 4.3: Creating a group 






















































