

Bachelor Thesis

 Simulating Building/Monuments Aging using

Procedural Generation

Nearchos Nearchou

University of Cyprus

Computer Science Department

December 2021

UNIVERSITY OF CYP RUS

COMPUTER SCIENCE DEPARTMENT

APPROVAL PAGE

Bachelor of Science Thesis

Simulating Building/Monuments Aging using Procedural Generation

Presented by Nearchos Nearchou

Reasearch Supervisor __

Andreas Aristidou

University of Cyprus

December, 2021

Acknowledgements

I would like to express my deep gratitude to my thesis supervisor, Assistant Professor Andreas

Aristidou at the Department of Computer Science of the University of Cyprus for his expert advice

and encouragement throughout this difficult project.

I would also like to thank Christos Othonos for sharing this inspiring project with me and provided

me with all the necessary knowledge in order to get a complete image of the project. He was always

accessible to answer my queries and clear up any facts I needed to evaluate.

I would also like to thank my friends who endured this long process with me, always offering

advice and unconditional love.

Finally, I would like to thank my family for the support and encouragement they showed in this

very intense academic year.

Abstract

Procedural Generation plays an important role in modern computer graphics and design. For that

creation of buildings, procedural construction is key. Although there are several tools for creating

good-looking structures, many of them lack a realistic and artistic touch. Structural degradation by

weathering effects and real-world occurrences must be taken into consideration to make them

appear more authentic. This project illustrates an implementation, which uses the CGA Shape

Grammar to design a structure, the grid model to store several attributes of the model, and a variety

of techniques and tools to illustrate how buildings and various materials age.

Table of Contents

Acknowledgements ... 3

Abstract .. 4

Table of Contents .. 5

Chapter 1 Introduction ... 7

1.1 Motivation ... 7

1.2 Contributions... 8

1.3 Objective ... 9

Chapter 2 Literature Review ... 10

2.1 Procedural Modeling of Buildings .. 10

2.2 L-system .. 11

2.3 CGA Shape Grammar ... 11

2.4 Building Aging.. 14

Chapter 3 Realistic Aging Effects & Materials .. 16

3.1 How Different Materials age... 16

3.2 Aging Effects .. 19

Chapter 4 Data Acquisition and Tools .. 23

4.1 Houdini ... 23

4.2 CGA tools ... 27

4.2.1 CGA Pipeline ... 30

Chapter 5 Methodology .. 34

5.1 Overview ... 34

5.2 Aging Simulation .. 36

5.3 Apply Aging.. 38

Chapter 6 Results .. 43

6.1 Introduction ... 43

6.2 Procedural Damage ... 44

6.3 Procedural Humidity ... 45

6.4 Procedural Wind Resistance ... 46

6.5 Procedural with Beams ... 47

6.6 Limitations .. 49

Chapter 7 Conclusions & Future Work.. 51

7.1 Conclusion .. 51

7.2 Future Work .. 52

Chapter 1

Introduction

Contents

1.1 Motivation

1.2 Contributions

1.3 Objective

1.1 Motivation

Computer graphics necessitates the use of technology. They are becoming a widespread feature in

user interfaces and commercial motion films on television. Today's computer visuals are vastly

different from those of the past. Artists and architects now have an interactive user interface that

allows them to manipulate the structure of an item using a variety of input devices.

In films and video games, graphic designers seek to convey their creative vision and evoke feelings

within the audience. As a result, the film and gaming industries aim to achieve distinctive outcomes

by hiring a large number of artists and spending a significant amount of money and resources.

Therefore, procedural generation emerges to assist businesses in avoiding costly outcomes.

Procedural generation is the process where the computer creates the most needed materials using

only the necessary resources. As a result, a lot of time and money can be saved to increase the

efficiency and the development of a big-scale project.

Furthermore, procedural generation in buildings has been increasingly popular in the last decade,

and individuals are experimenting with new ways to portray their structures. However, many

procedural construction approaches have significant flaws, such us their generators, which are

quite sluggish, and the data intake is enormous. These limitations create an opportunity and

encourage scientists to examine the use of building generation for video games, with a particular

focus on inventing an algorithm that reduces the amount of mesh data created for each building

and the generation time.

In terms of the results that computers generate, most projects lack a realistic look, since they

generate ñexcellentò outputs according to the data set given. In contrast real life, where people live

in houses that have flaws due to the passage of time and weather conditions, and this is what the

game users and spectators want to see. As previously stated, individuals struggle with modelling

rather than displaying the impact from ageing and weather conditions. They want to handle their

large input data in order to provide larger outcomes, which are what the majority of consumers

really want to view; results.

The goal of this solution is to develop outcomes that are fairly similar to those seen in the actual

world, not flawless but still pleasing to the eye. The aim is to handle as much data as possible in

order to get high-resolution, low-complexity outcomes.

1.2 Contributions

The following are the thesis' key contributions:

¶ Use the software SideFX Houdini, employ façade operations with the CGA Shape

Grammar, simulate the model procedurally, and apply aging to it.

¶ Use of CGA Grammar Shape to split all of the building's facades and assign each façade

to a distinct group.

¶ Introduce a procedural method for assigning attributes to each point of the construction by

reading files.

¶ Present weathering effects utilizing aging tools/techniques that are similar to how

structures age in the actual world.

¶ Demonstrate alternative ways for how a structure may behave rather than target the

simulationôs efficiency.

¶ Introduce various building materials and how they mature. Some materials are stiffer than

others, and the effect that a material may have varies.

1.3 Objective

The project's desired result is to implement a system that generates age effects for buildings in a

procedural manner. The purpose is to create a tool to aid graphic designers, as well as architects,

to achieve more accuracy when creating historic structures or imagining how a building would

age. Furthermore, the approach may be beneficial to the gaming industry. When a project requires

the construction of a new or deterioration of an existing structure, a large number of graphic

designers and programmers work tirelessly to get the desired outcome. With the aid of procedural

generation, a lot of time and resources are saved, allowing graphic artists to focus all of their

attention and creativity on the minor details, resulting in a considerably better product. Finally, the

technology would allow the artists to use their talent to produce fascinating aging effects and

demonstrate their abilities.

Chapter 2

Literature Review

Contents

2.1 Procedural Modeling of Buildings

2.2 L-System

2.3 CGA Shape Grammar

2.4 Building Aging

2.1 Procedural Modeling of Buildings

Parish and Muller (2001) employed procedural modeling to construct CityEngine, a software tool

that was first developed at ETH Zurich and eventually bought by ESRI. CityEngine is a

commercial multi-platform 3D modeling program that was created to create 3D urban landscapes.

The procedural method to modeling efficiently is the central principle of CityEngine (Müller,

Zeng, Wonka and Van Gool, 2007). The pipeline includes numerous procedural modeling tools

for creating large-scale urban layouts as well as CGA rules for generating complex structures

(Müller et al., 2006). In summary, this method uses a rule-based approach to provide a rapid and

easy way to develop urban design scenarios. The issue with this strategy, as a result of the mix of

different types, would be to alter parameters to adapt to current city conditions.

2.2 L-system

Muller et al. (2006) used the Lindenmayer systems or L-systems which they were outlined by the

Hungarian scientist and botanist Aristid Lindenmayer in 1968 who needed to portray plant

development (Müller et al., 2006). The exhibit of astounding success based on the utilization of

design grammars had fundamental impact on procedural methods. In spite of the fact that L-

systems are not specifically pertinent for this goal, the notion of grammar and some of the rules

(scale, translate, rotate) were embraced for Procedural Modeling Buildings (Müller et al., 2006).

L-systems follow a straightforward consecutive structure which can be characterized by

three fundamental parts: ñVò which is an alphabet of the system, an axiom ñɤò as a string of

symbols and a finite set of production rules ñPò which characterize the way in which

the factors modify themselves (Wonka, Wimmer, Sillion and Ribarsky, 2003).

2.3 CGA Shape Grammar

The scripting language that is used for the generation of entities in CityEngine is a Computer

Generated Architecture (CGA) shape grammar (Müller et al., 2006). CGA is based on the L-system

data structure which uses shapes rather symbols.

CGA shape grammar is characterized by:

¶ a set of geometries or shapes,

¶ a set of geometry/shape operations,

¶ a set of rules,

¶ the initial shape.

The following sections will provide a brief overview of each one of the CGA shape grammar

characteristics.

Shape

A shape is the foremost imperative concept of CGA shape grammar.

The properties of a shape are:

¶ the pivot, which is defined by a root and direction point,

¶ the bounding box's scope, which is determined by translation, rotation, and size

¶ the geometry

Figure 2.8: main attribute of a CGA shape. CGA shape grammar shape definition, from (Müller et al.,

2006). The pivot is P, the scope is S, and a sample shape is presented within the scope.

Rules

The alteration of shapes is done using generic principles, similar to L-systems. All CGA rules have

the format

Predecessor --> Successor.

As can be seen from the figure above, the predecessor (left side of arrow) must be replaced by the

successor (right side of arrow). A set of shape operations are employed to define the model's new

shape after Successor.

The examination of how CityEngine divides a block into four storeys using a 2D polygon will be

explained in the following example (Klippel, n.d.):

Lot --> extrude (10) Envelope

Envelope --> split(y) {~2.5: Floor} *

The first rule mandates that the 2D form "Lot" must be substituted by a 3D shape "Envelope",

which is created by extruding the 2D polygon by 10 units. The second rule states that each

Envelope created by the first rule shall be divided (y axis) into four 2.5-height Floor forms, for a

total of four floors (Klippel, n.d.).

Operations

The project employs general operations to alter forms in the same way as L-systems do. The

following are the key operations:

¶ insertion: adds geometry and/or a texture to the scene. These are architectural components

of structures, such as a windows, doors, or beams.

¶ basic graphics transformations: translate, scale, rotate.

¶ subdivision split: Splits the current form into numerous shapes. Splits are ubiquitous in

architecture. The repeat splits, following specific rules.

¶ component split: breaks a form into smaller components, such as faces, lines, or points.

This is helpful in design to isolate a facade from the building mass model, for example. A

mass model is a simplified model that depicts the main structure of a structure while

omitting specifics.

CGA example

Figure 2.9 displays a basic illustration of a facade's breakdown. A CGA Shape Grammar may

readily capture this breakdown.

Figure 2.9: Deterioration of the facade explained in paper (Muller et al. 2007).

2.4 Building Aging

Gutierrez and Sheffer introduced a variety of tools and strategies for presenting building aging by

employing weathering processes and aging occurrences in a variety of materials, including

mudbrick and rocks (Gutierrez and Sheffer, 2015). The models created and described in this paper

are based on their method, and they have been designed to include their ageing representation.

This is achieved by modifying the FEA mesh for a specified time frame to simulate aging

(Gutierrez and Sheffer, 2015). Assuming aging values for each grid point and keeping track of the

damages as time passes, when the value is 0, it implies it has been entirely destroyed, however

when the value is 1 it suggests it has not been completely destroyed (Gutierrez and Sheffer, 2015).

According to the aging values, the FEA mesh is extruded and molded. The purpose is to move the

aged data into the procedural pipeline so that the building may be completed. Each surface is

represented differently once the data has been transmitted. For example, the ceiling is being pushed

inwards as the walls are being peeled. Another thing to keep in mind is that each material has a

distinct stiffness. Mudbrick, on the other hand, is more susceptible to erosion and slow weathering,

which results to incremental and, in many cases, smooth destruction (Gutierrez and Sheffer, 2015).

After reviewing the main theories and research that has been conducted Procedural Modeling of

Buildings, CGA shape grammar, L-Systems and Building aging, the theoretical framework behind

this project is established. Following this, more information about how the theories were

implemented in the project will be provided.

Chapter 3

Realistic Aging Effects & Materials

Contents

3.1 How Different Materials age

3.2 Aging Effects

3.1 How Different Materials age

This section of the document will address the aging of various construction materials. The goal is

to see how all of these materials evolve over time so that data is included in the solution.

Mudbrick

A mudbrick, also known as a mud-brick is the oldest and most often used in construction material.

It's an air-dried brick constructed of loam, mud, sand, and water, with a binding substance like rice

husks or straw (The Oxford Companion to Archaeology, 1997). Mudbricks have been around since

9000 BCE, but bricks have been burned since 4000 BC to strengthen their strength and longevity

(The Oxford Companion to Archaeology, 1997). In figure 3.1 can be seen an example of how a

mudbrick ages.

Figure 3.1: Left image is example of mudbrick in houses and the right image is how it ages.

Wood

Wood is mostly employed in the floor construction, although it may also be found in the walls.

Wood has played a vital part in the history of civilization. Humans have utilized it for a variety of

purposes, including fuel, building materials, furniture, paper, tools, and weaponry (D'Costa, 2015).

Figure 3.2 shows the effect of an aged wood.

Figure 3.2: Left image represent a healthy wood and the right side an aged wood

Concrete

Concrete is a long-lasting and adaptable construction material that may be found all over the world

(6 Popular Uses for Concrete - Ozinga, 2013). It's used on some of the most unusual concrete

structures in the world, and it can be seen everywhere in nowadays (6 Popular Uses for Concrete

- Ozinga, 2013). Figure 3.3 shows the crack effect that is being created from an old concrete.

Figure 3.3: Stone aging representation

Stone

Stone is another significant construction element. Stones can be used for flooring, roofing,

brickwork, paving roads, and as aggregates in concrete, depending on the kind (Types of Building

Stones and their uses, 2019). Natural stones are used to construct the majority of prehistoric

structures because they are more solid throughout time (Types of Building Stones and their uses,

2019). An example of how a stone age can be seen in figure 3.4.

Figure 3.4: Stone aging effect

3.2 Aging Effects

Cracks

Cracks are usually visible in walls rather than roofs, especially on mudbrick and concrete

materials. It's possible that it will show up on other materials, but it's not very common, especially

on stones that don't have a binding substance. Figure 3.5 depicts a few additional examples.

Figure 3.5: Crack effect on houses

Tiles Collapsing

When the tile absorbs too much water then the outer layer isn't adequately protecting it. As a result,

if moisture is absorbed, the tile swells, expands, and creates pressure. As a consequence, the tile

stands out, and in many circumstances, since tiles act as a support system for other tiles, they all

follow suit. Figure 3.6 further shows how the tile collapsing action frequently results in holes in

the structure.

Figure 3.6: Representation of tiles collapsing

Peeling

Many houses have an outside layer that conceals the construction material (wood, concrete,

mudbrick, etc.). However, if proper care is not performed, that layer will peel away, revealing the

substance beneath.

Figure 3.7: Peeling effect on houses

Chapter 4

Data Acquisition and Tools

Contents

4.1 Houdini

4.2 CGA tools

4.2.1 CGA Pipeline

4.1 Houdini

SideFX Houdini itôs a 3D tool that procedurally allows its artists use the software for the film and

game industry. Houdini's procedural character comes from the ability to store nodes and transfer

the data quickly and effectively to other attributes, allowing its users to use them in different forms

without starting over; and thatôs what makes Houdini extremely flexible. Houdini is also famous

for its Visual Effects. Having a strong toolset allows its users to explore as much as possible the

animation and procedural modeling (FX Features | SideFX, n.d.).

Bellow follows a list of the essential tools and features that Houdini will provide for this solution.

Geometry

Geometry in Houdini is built up of primitives and the most frequent are the polygon faces. A vertex

is a point on a polygonal face. The difference between a vertex and a point is that a point can be

shared by associated primitives however vertices are unique to each primitive (Geometry

functions, n.d.).

Attributes

Houdini uses attributes as values. Point attributes include things like color, location, UV

coordinates, weight and normal (Geometry attributes, n.d.). Attributes are being stored as

primitives, vertices, points, or as an entire geometry (referred to as the "detail" level) (Figure 4.1)

(Geometry attributes, n.d.).

All these attributes can be utilized for a number of things such as changing the shape of the

geometry.

Figure 4.1: A deeper understanding of an attribute in Houdini

Operators

The procedural essence of Houdini can be found in its operators. There are several operators in

Houdini but only the relevant ones for this application will be discussed. The most important are

the Surface Operators (SOPs) which these are used to construct and modify geometry usually for

procedural modeling (Houdini (software) - Wikipedia, 2006). Dynamic Operators (DOPs) are

solvers that are used to construct simulations, Vector Operators are for altering geometry, Shading

Operators represent a shader that will be used on geometry and finally Composite Operators are

utilized to perform compositing on recordings (Houdini (software) - Wikipedia, 2006).

Script

For its scripts Houdini uses Python or Hscript which does not manipulate geometry. The use of

the scripts is mainly for doing difficult computations and it is also some sort of way to collaborate

with Houdini IDE (Python Script, n.d.). Figure 4.2 illustrates an example, where python is used to

read some files and pass values to the primitives depends on the file content.

Figure 4.2: Python script

Groups

Groups refers to a grouping of points or faces. To create a group, the user must give the name, a

type (primitives, points, edges, vertices) and finally a function (replacing, union etc.) (Figure 4.3).

Something fascinating about Houdini is that when a point is eliminated then Houdini removes it

from all the groups that it was being used in. There are two types of point groups: ordered and

unordered. Ordered groups stock their points in selection order and unordered groups stock their

points in creation order (Groups, n.d.).

Figure 4.3: Creating a group

